Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 355: 120476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442657

RESUMO

Worldwide, states are gazetting new Marine Protected Areas (MPAs) to meet the international commitment of protecting 30% of the seas by 2030. Yet, protection benefits only come into effect when an MPA is implemented with activated regulations and actively managed through continuous monitoring and adaptive management. To assess if actively managed MPAs are the rule or the exception, we used the Mediterranean and Black Seas as a case study, and retrieved information on monitoring activities for 878 designated MPAs in ten European Union (EU) countries. We searched for scientific and grey literature that provides information on the following aspects of MPA assessment and monitoring: ecological (e.g., biomass of commercially exploited fish), social (e.g., perceptions of fishers in an MPA), economic (e.g., revenue of fishers) and governance (e.g., type of governance scheme). We also queried MPA authorities on their past and current monitoring activities using a web-based survey through which we collected 123 responses. Combining the literature review and survey results, we found that approximately 16% of the MPA designations (N = 878) have baseline and/or monitoring studies. Most monitoring programs evaluated MPAs based solely on biological/ecological variables and fewer included social, economic and/or governance variables, failing to capture and assess the social-ecological dimension of marine conservation. To increase the capacity of MPAs to design and implement effective social-ecological monitoring programs, we recommend strategies revolving around three pillars: funding, collaboration, and technology. Following the actionable recommendations presented herein, MPA authorities and EU Member States could improve the low level of MPA monitoring to more effectively reach the 30% protection target delivering benefits for biodiversity conservation.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Biomassa , Ecossistema , Pesqueiros , Peixes/fisiologia , Oceanos e Mares , Inquéritos e Questionários
2.
Mar Environ Res ; 191: 106176, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716279

RESUMO

Climate change has significant impacts on marine ecosystems, resulting in disruptions in biological interactions, shifts in community composition, and changes in the physiology of fish and other marine organisms. In this study conducted in the central Mediterranean Sea, the mean temperature of the catch (MTC) was employed as an indicator to investigate the climatological factors influencing the fish community. The MTC, which utilizes species-preferred temperatures, was calculated using bottom temperature (BT) data weighted against scientific catches. The estimated MTC increasing rates were 0.01 °C year-1 for the entire community, 0.017 °C year-1 for the shelf break, and 0.004 °C year-1 for the continental slope assemblage. We found that MTC is increasing at a lower rate compared to BT, suggesting a progressive under-adaptation of the fish community that seems not fully able to keep up with the ongoing pace of warming. The study identified sea surface temperature and bottom temperature as key drivers of changes in fish community composition. Notably, the fish community composition exhibited drastic changes over the studied period, and we suggest that the MTC can be a useful index to monitor such changes within the context of the EU's climate change adaptation strategy.


Assuntos
Ecossistema , Aquecimento Global , Animais , Peixes/fisiologia , Mudança Climática , Itália , Temperatura
3.
Nat Commun ; 13(1): 4381, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945205

RESUMO

Elasmobranchs are heavily impacted by fishing. Catch statistics are grossly underestimated due to missing data from various fishery sectors such as small-scale fisheries. Marine Protected Areas are proposed as a tool to protect elasmobranchs and counter their ongoing depletion. We assess elasmobranchs caught in 1,256 fishing operations with fixed nets carried out in partially protected areas within Marine Protected Areas and unprotected areas beyond Marine Protected Areas borders at 11 locations in 6 Mediterranean countries. Twenty-four elasmobranch species were recorded, more than one-third belonging to the IUCN threatened categories (Vulnerable, Endangered, or Critically Endangered). Catches per unit of effort of threatened and data deficient species were higher (with more immature individuals being caught) in partially protected areas than in unprotected areas. Our study suggests that despite partially protected areas having the potential to deliver ecological benefits for threatened elasmobranchs, poor small-scale fisheries management inside Marine Protected Areas could hinder them from achieving this important conservation objective.


Assuntos
Elasmobrânquios , Pesqueiros , Animais , Conservação dos Recursos Naturais , Humanos
4.
J Environ Manage ; 305: 114370, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968935

RESUMO

Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.


Assuntos
Biodiversidade , Ecossistema , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Peixes , Mar Mediterrâneo
5.
Mol Ecol ; 30(13): 3127-3139, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33078500

RESUMO

Robust assessments of taxonomic and functional diversity are essential components of research programmes aimed at understanding current biodiversity patterns and forecasting trajectories of ecological changes. Yet, evaluating marine biodiversity along its dimensions is challenging and dependent on the power and accuracy of the available data collection methods. Here we combine three traditional survey methodologies (underwater visual census strip transects [UVCt], baited underwater videos [BUV] and small-scale fishery catches [SSFc]), and one novel molecular technique (environmental DNA metabarcoding [eDNA]-12S rRNA and cytochrome oxidase subunit 1 [COI]) to investigate their efficiency and complementarity in assessing fish diversity. We analysed 1,716 multimethod replicates at a basin scale to measure the taxonomic and functional diversity of Mediterranean fish assemblages. Taxonomic identities were investigated at species, genus and family levels. Functional identities were assessed using combinations of morphological, behavioural and trophic traits. We show that: (a) SSFc provided the higher taxonomic diversity estimates followed by eDNA, and then UVCt and BUV; (b) eDNA was the only method able to gather the whole spectrum of considered functional traits, showing the most functionally diversified and least redundant fish assemblages; and (c) the effectiveness of eDNA in describing functional structure reflected its lack of selectivity towards any considered functional trait. Our findings suggest that the reach of eDNA analysis stretches beyond taxon detection efficiency and provides new insights into the potential of metabarcoding in ecological studies.


Assuntos
DNA Ambiental , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Peixes/genética
6.
Sci Rep ; 10(1): 11011, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620846

RESUMO

Elasmobranchs are among the species most threatened by overfishing and a large body of evidence reports their decline around the world. As they are large predators occupying the highest levels of marine food webs, their removal can alter the trophic web dynamic through predatory release effects and trophic cascade. Suitable management of threatened shark species requires a good understanding of their behaviour and feeding ecology. In this study we provide one of the first assessments of the trophic ecology of the "vulnerable" smooth-hounds Mustelus mustelus and M. punctulatus in the Central Mediterranean Sea, based on stomach contents and stable isotope analyses. Ontogenetic diet changes were addressed by comparing the feeding habits of three groups of individuals: juveniles, maturing and adults. Our results highlighted that the two species share a similar diet based mostly on the consumption of benthic crustaceans (e.g. hermit crabs). Their trophic level increases during ontogeny, with adults increasing their consumption of large-sized crustaceans (e.g. Calappa granulata, Palinurus elephas), cephalopods (e.g. Octopus vulgaris) and fish (e.g. Trachurus trachurus). Our results provide also evidence of ontogenetic shifts in diet for both species showing a progressive reduction of interspecific trophic overlap during growth. The results of this study contribute to improve the current knowledge on the trophic ecology of these two threatened sharks in the Strait of Sicily, thus providing a better understanding of their role in the food web.


Assuntos
Ração Animal/análise , Tubarões/crescimento & desenvolvimento , Animais , Conservação dos Recursos Naturais , Feminino , Marcação por Isótopo , Masculino , Mar Mediterrâneo , Tubarões/classificação , Tubarões/fisiologia
7.
PLoS One ; 14(1): e0210659, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645620

RESUMO

Benthic-pelagic coupling plays a pivotal role in aquatic ecosystems but the effects of fishery driven interactions on its functioning has been largely overlooked. Disentangling the benthic-pelagic links including effects of mixed fisheries, however, needs sketching a whole description of ecosystem interactions using quantitative tools. A holistic food web model has been here developed in order to understand the interplay between the benthic-pelagic coupling and mixed fisheries in a Mediterranean system such as the Strait of Sicily. The reconstruction of the food web required review and integration of a vast set of local and regional biological information from bacteria to large pelagic species that were aggregated into 72 functional groups. Fisheries were described by 18 fleet segments resulting from combination of fishing gears and fishing vessel size. The input-output analysis on the food web of energy pathways allowed identifying effects of biological and fishery components. Results showed that the structure of the Strait of Sicily food web is complex. Similarly to other Mediterranean areas, the food web of the Strait of Sicily encompasses 4.5 trophic levels (TLs) with the highest TLs reached by bluefin tuna, swordfish and large hake and largely impacted by bottom trawling and large longline. Importantly, benthic-pelagic coupling is affected by direct and indirect impacts among groups of species, fleets and fleets-species through the whole trophic spectrum of the food web. Moreover, functional groups able to move on large spatial scales or life history of which is spent between shelf and slope domains play a key role in linking subsystems together and mediate interactions in the Mediterranean mixed fisheries.


Assuntos
Ecossistema , Modelos Teóricos , Animais , Pesqueiros , Sedimentos Geológicos , Região do Mediterrâneo
8.
Mar Environ Res ; 116: 1-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26922044

RESUMO

Fish populations are often comprised of individuals that use habitats and associated resources in different ways. We placed sonic transmitters in, and tracked movements of, white sea bream (Diplodus sargus sargus) in the no-take zone of a Mediterranean marine protected area: the Torre Guaceto marine protected area, (Adriatic Sea, Italy). Tagged fish displayed three types of diel activity patterns in three different habitats: sand, rocky reefs and "matte" of the seagrass Posidonia oceanica. Individuals were more active during the day than at night. Overall, white sea bream displayed a remarkable behavioural plasticity in habitat use. Our results indicate that the observed behavioural plasticity in the marine protected area could be the result of multiple ecological and environmental drivers such as size, sex and increased intra-specific competition. Our findings support the view that habitat diversity helps support high densities of fishes.


Assuntos
Comportamento Animal/fisiologia , Ecossistema , Fotoperíodo , Dourada/fisiologia , Animais , Conservação dos Recursos Naturais , Mar Mediterrâneo , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...